If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8k^2+16k=10
We move all terms to the left:
8k^2+16k-(10)=0
a = 8; b = 16; c = -10;
Δ = b2-4ac
Δ = 162-4·8·(-10)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-24}{2*8}=\frac{-40}{16} =-2+1/2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+24}{2*8}=\frac{8}{16} =1/2 $
| 7.3y-(-5.8)=-51.9 | | 3x+7=9x-43 | | 7-9w=13-12w | | x+5=8 | | 6(x-2)+5=3x-4 | | X+6=3x- | | 3(x-3)=4(x+4) | | 8=k52 | | 3(x-3)=4(x=4) | | 30=3×n+10 | | 3/4(5x-16)=2 | | (X)^2+(x+2)^2=400^2 | | 15+12.5+x=48 | | -5/7x=15/28 | | 30=3+n | | 8x-15=5x+11 | | 6=-2x=28 | | 17/3=-11/9+n | | 2x-7=8x-9 | | 5(p+4)=60 | | Y=8(9+4i) | | -9=-11+(b/8) | | 0=8i(9+4i) | | 0.3x+0.7x=3.0 | | 4+9s=472 | | 5y^2+30y+45=0 | | 27/9=-13/4b | | c/2+16=36 | | 2c/2=100/2 | | c-10=8 | | 8n-2(n+5=-3+6n | | n+n+2+n+4=48 |